压缩算法
*变动长度编码法(RLE)。将重复的值存储为一个单字节及其计数。
*哈夫曼编码。将常见的元素使用更小的单位存储。
Run-Length Encoding (RLE)
变动长度编码法(RLE)
RLE is probably the simplest way to do compression. Let's say you have data that looks like this:
RLE可能是进行压缩的最简单方法。 假设您的数据如下所示:
aaaaabbbcdeeeeeeef...
then RLE encodes it as follows:
然后RLE将其编码为:
5a3b1c1d7e1f...
Instead of repeating bytes, you first write how often that byte occurs and then the byte's actual value. So 5a
means aaaaa
. If the data has a lot of "byte runs", that is lots of repeating bytes, then RLE can save quite a bit of space. It works quite well on images.
您首先要写出该字节出现的频率,然后再写出字节的实际值,而不是重复字节。 所以5a
的意思是aaaaa
。 如果数据有很多“字节运行”,那就是很多重复的字节,那么RLE可以节省相当多的空间。 它在图像上运行良好。
There are many different ways you can implement RLE. Here's an extension of Data
that does a version of RLE inspired by the old PCX image file format.
有许多不同的方法可以实现RLE。 这是Data
的扩展,它使旧的PCX图像文件格式启发了一个RLE版本。
The rules are these:
规则如下:
Each byte run, i.e. when a certain byte value occurs more than once in a row, is compressed using two bytes: the first byte records the number of repetitions, the second records the actual value. The first byte is stored as:
191 + count
. This means encoded byte runs can never be more than 64 bytes long.每个字节运行,即当某个字节值连续出现一次时,使用两个字节进行压缩:第一个字节记录重复次数,第二个字节记录实际值。 第一个字节存储为:
191 + count
。 这意味着编码的字节运行时间永远不会超过64个字节。A single byte in the range 0 - 191 is not compressed and is copied without change.
0 - 191范围内的单个字节未压缩,无需更改即可复制。
A single byte in the range 192 - 255 is represented by two bytes: first the byte 192 (meaning a run of 1 byte), followed by the actual value.
192 - 255范围内的单个字节由两个字节表示:首先是字节192(表示1个字节的运行),然后是实际值。
Here is the compression code. It returns a new Data
object containing the run-length encoded bytes:
这是压缩代码。 它返回一个包含变动长度编码字节的新Data
对象:
extension Data {
public func compressRLE() -> Data {
var data = Data()
self.withUnsafeBytes { (uPtr: UnsafePointer<UInt8>) in
var ptr = uPtr
let end = ptr + count
while ptr < end { //1
var count = 0
var byte = ptr.pointee
var next = byte
while next == byte && ptr < end && count < 64 { //2
ptr = ptr.advanced(by: 1)
next = ptr.pointee
count += 1
}
if count > 1 || byte >= 192 { // 3
var size = 191 + UInt8(count)
data.append(&size, count: 1)
data.append(&byte, count: 1)
} else { // 4
data.append(&byte, count: 1)
}
}
}
return data
}
}
How it works:
怎么运行的:
We use an
UnsafePointer
to step through the bytes of the originalData
object.At this point we've read the current byte value into the
byte
variable. If the next byte is the same, then we keep reading until we find a byte value that is different, or we reach the end of the data. We also stop if the run is 64 bytes because that's the maximum we can encode.Here, we have to decide how to encode the bytes we just read. The first possibility is that we've read a run of 2 or more bytes (up to 64). In that case we write out two bytes: the length of the run followed by the byte value. But it's also possible we've read a single byte with a value >= 192. That will also be encoded with two bytes.
The third possibility is that we've read a single byte < 192. That simply gets copied to the output verbatim.
我们使用
UnsafePointer
来逐步执行原始Data
对象的字节。此时我们已将当前字节值读入
byte
变量。 如果下一个字节是相同的,那么我们继续读取,直到找到不同的字节值,或者我们到达数据的末尾。 如果运行是64字节,我们也会停止,因为这是我们可以编码的最大值。在这里,我们必须决定如何编码我们刚刚读取的字节。 第一种可能性是我们已经读取了2个或更多字节(最多64个)的运行。 在这种情况下,我们写出两个字节:运行的长度,后跟字节值。 但是我们也可以读取值> = 192的单个字节。这也将用两个字节编码。
第三种可能性是我们读取了单个字节<192。这只是逐字复制到输出。
You can test it like this in a playground:
在 playground 测试:
let originalString = "aaaaabbbcdeeeeeeef"
let utf8 = originalString.data(using: String.Encoding.utf8)!
let compressed = utf8.compressRLE()
The compressed Data
object should be <c461c262 6364c665 66>
. Let's decode that by hand to see what has happened:
压缩的Data
对象应该是<c461c262 6364c665 66>
。 让我们手动解码,看看发生了什么:
c4 This is 196 in decimal. It means the next byte appears 5 times.
61 The data byte "a".
c2 The next byte appears 3 times.
62 The data byte "b".
63 The data byte "c". Because this is < 192, it's a single data byte.
64 The data byte "d". Also appears just once.
c6 The next byte will appear 7 times.
65 The data byte "e".
66 The data byte "f". Appears just once.
So that's 9 bytes encoded versus 18 original. That's a savings of 50%. Of course, this was only a simple test case... If you get unlucky and there are no byte runs at all in your original data, then this method will actually make the encoded data twice as large! So it really depends on the input data.
所以这是9个字节的编码而不是18个原始的。 这节省了50%。 当然,这只是一个简单的测试用例...如果你运气不好并且原始数据中根本没有字节运行,那么这种方法实际上会使编码数据的数量增加一倍! 所以它真的取决于输入数据。
Here is the decompression code:
这是解压缩代码:
public func decompressRLE() -> Data {
var data = Data()
self.withUnsafeBytes { (uPtr: UnsafePointer<UInt8>) in
var ptr = uPtr
let end = ptr + count
while ptr < end {
// Read the next byte. This is either a single value less than 192,
// or the start of a byte run.
var byte = ptr.pointee // 1
ptr = ptr.advanced(by: 1)
if byte < 192 { // 2
data.append(&byte, count: 1)
} else if ptr < end { // 3
// Read the actual data value.
var value = ptr.pointee
ptr = ptr.advanced(by: 1)
// And write it out repeatedly.
for _ in 0 ..< byte - 191 {
data.append(&value, count: 1)
}
}
}
}
return data
}
Again this uses an
UnsafePointer
to read theData
. Here we read the next byte; this is either a single value less than 192, or the start of a byte run.If it's a single value, then it's just a matter of copying it to the output.
But if the byte is the start of a run, we have to first read the actual data value and then write it out repeatedly.
再次,它使用
UnsafePointer
来读取Data
。 这里我们读下一个字节; 这可以是小于192的单个值,也可以是字节运行的开始。如果它是单个值,那么只需将其复制到输出即可。
但是如果字节是运行的开始,我们必须首先读取实际数据值,然后重复写出。
To turn the compressed data back into the original, you'd do:
要将压缩数据恢复为原始数据,您需要执行以下操作:
let decompressed = compressed.decompressRLE()
let restoredString = String(data: decompressed, encoding: NSUTF8StringEncoding)
And now originalString == restoredString
must be true!
现在originalString == restoredString
必须是真的!
Footnote: The original PCX implementation is slightly different. There, a byte value of 192 (0xC0) means that the following byte will be repeated 0 times. This also limits the maximum run size to 63 bytes. Because it makes no sense to store bytes that don't occur, in my implementation 192 means the next byte appears once, and the maximum run length is 64 bytes.
脚注:最初的PCX实现略有不同。 在那里,字节值192(0xC0)意味着后续字节将重复0次。 这也将最大运行大小限制为63个字节。 因为存储不存在的字节没有意义,所以在我的实现中192表示下一个字节出现一次,最大运行长度为64字节。
This was probably a trade-off when they designed the PCX format way back when. If you look at it in binary, the upper two bits indicate whether a byte is compressed. (If both bits are set then the byte value is 192 or more.) To get the run length you can simply do byte & 0x3F
, giving you a value in the range 0 to 63.
当他们设计PCX格式的时候,这可能是一种权衡。 如果以二进制形式查看,则高两位表示是否压缩了一个字节。 (如果两个位都置位,则字节值为192或更大。)要获得运行长度,您只需执行byte&0x3F
,为您提供0到63范围内的值。
Written for Swift Algorithm Club by Matthijs Hollemans
Migrated to Swift3 by Jaap Wijnen
Huffman Coding
哈夫曼编码
The idea: To encode objects that occur often with a smaller number of bits than objects that occur less frequently.
想法:编码通常以比不常发生的对象少的位数出现的对象。
Although any type of objects can be encoded with this scheme, it is common to compress a stream of bytes. Suppose you have the following text, where each character is one byte:
尽管可以使用此方案对任何类型的对象进行编码,但通常会压缩字节流。 假设您有以下文本,其中每个字符是一个字节:
so much words wow many compression
If you count how often each byte appears, you can see some bytes occur more than others:
如果计算每个字节出现的频率,您可以看到一些字节比其他字节更多:
space: 5 u: 1
o: 5 h: 1
s: 4 d: 1
m: 3 a: 1
w: 3 y: 1
c: 2 p: 1
r: 2 e: 1
n: 2 i: 1
We can assign bit strings to each of these bytes. The more common a byte is, the fewer bits we assign to it. We might get something like this:
我们可以为每个字节分配位串。 一个字节越常见,我们分配给它的位越少。 我们可能得到这样的东西:
space: 5 010 u: 1 11001
o: 5 000 h: 1 10001
s: 4 101 d: 1 11010
m: 3 111 a: 1 11011
w: 3 0010 y: 1 01111
c: 2 0011 p: 1 11000
r: 2 1001 e: 1 01110
n: 2 0110 i: 1 10000
Now if we replace the original bytes with these bit strings, the compressed output becomes:
现在,如果我们用这些位字符串替换原始字节,压缩输出将变为:
101 000 010 111 11001 0011 10001 010 0010 000 1001 11010 101
s o _ m u c h _ w o r d s
010 0010 000 0010 010 111 11011 0110 01111 010 0011 000 111
_ w o w _ m a n y _ c o m
11000 1001 01110 101 101 10000 000 0110 0
p r e s s i o n
The extra 0-bit at the end is there to make a full number of bytes. We were able to compress the original 34 bytes into merely 16 bytes, a space savings of over 50%!
最后的额外0位用于生成完整的字节数。 我们能够将原来的34个字节压缩成16个字节,节省的空间超过50%!
To be able to decode these bits, we need to have the original frequency table. That table needs to be transmitted or saved along with the compressed data. Otherwise, the decoder does not know how to interpret the bits. Because of the overhead of this frequency table (about 1 kilobyte), it is not beneficial to use Huffman encoding on small inputs.
为了能够解码这些位,我们需要具有原始频率表。该表需要与压缩数据一起传输或保存。否则,解码器不知道如何解释这些比特。由于该频率表(约1千字节)的开销,在小输入上使用霍夫曼编码是不利的。
How it works
怎么运行的
When compressing a stream of bytes, the algorithm first creates a frequency table that counts how often each byte occurs. Based on this table, the algorithm creates a binary tree that describes the bit strings for each of the input bytes.
压缩字节流时,算法首先创建一个频率表,计算每个字节出现的频率。 基于此表,该算法创建一个二叉树,用于描述每个输入字节的位串。
For our example, the tree looks like this:
对于我们的示例,树看起来像这样:
Note that the tree has 16 leaf nodes (the grey ones), one for each byte value from the input. Each leaf node also shows the count of how often it occurs. The other nodes are "intermediate" nodes. The number shown in these nodes is the sum of the counts of their child nodes. The count of the root node is therefore the total number of bytes in the input.
请注意,树有16个叶节点(灰色节点),每个节点对应一个输入的字节值。 每个叶节点还显示其发生频率的计数。 其他节点是“中间”节点。 这些节点中显示的数字是其子节点的计数总和。 因此,根节点的计数是输入中的总字节数。
The edges between the nodes are either "1" or "0". These correspond to the bit-encodings of the leaf nodes. Notice how each left branch is always 1 and each right branch is always 0.
节点之间的边缘是“1”或“0”。 这些对应于叶节点的位编码。 注意每个左分支始终为1,每个右分支始终为0。
Compression is then a matter of looping through the input bytes and for each byte traversing the tree from the root node to that byte's leaf node. Every time we take a left branch, we emit a 1-bit. When we take a right branch, we emit a 0-bit.
然后,压缩是循环输入字节以及从根节点到该字节的叶节点遍历树的每个字节的问题。 每次我们采用左分支,我们发出1位。 当我们采用正确的分支时,我们发出一个0位。
For example, to go from the root node to c
, we go right (0
), right again (0
), left (1
), and left again (1
). This gives the Huffman code as 0011
for c
.
例如,从根节点到c
,我们向右(0
),再向右(0
),向左(1
),再向左(1
)。 这使得霍夫曼代码为c
为0011
。
Decompression works in exactly the opposite way. It reads the compressed bits one-by-one and traverses the tree until it reaches to a leaf node. The value of that leaf node is the uncompressed byte. For example, if the bits are 11010
, we start at the root and go left, left again, right, left, and a final right to end up at d
.
减压的作用完全相反。 它逐个读取压缩位并遍历树,直到它到达叶节点。 该叶节点的值是未压缩的字节。 例如,如果位是11010
,我们从根开始向左,向左,向左,向左,最后向右,以d
结束。
The code
代码
Before we get to the actual Huffman coding scheme, it is useful to have some helper code that can write individual bits to an NSData
object. The smallest piece of data that NSData
understands is the byte, but we are dealing in bits, so we need to translate between the two.
在我们开始实际的霍夫曼编码方案之前,有一些辅助代码可以将单个位写入NSData
对象。 NSData
理解的最小数据是字节,但我们处理的是比特,所以我们需要在两者之间进行转换。
public class BitWriter {
public var data = NSMutableData()
var outByte: UInt8 = 0
var outCount = 0
public func writeBit(bit: Bool) {
if outCount == 8 {
data.append(&outByte, length: 1)
outCount = 0
}
outByte = (outByte << 1) | (bit ? 1 : 0)
outCount += 1
}
public func flush() {
if outCount > 0 {
if outCount < 8 {
let diff = UInt8(8 - outCount)
outByte <<= diff
}
data.append(&outByte, length: 1)
}
}
}
To add a bit to the NSData
, you can call writeBit()
. This helper object stuffs each new bit into the outByte
variable. Once you have written 8 bits, outByte
gets added to the NSData
object for real.
要向NSData
添加一点,可以调用writeBit()
。 这个帮助器对象将每个新位填充到outByte
变量中。 一旦你写了8位,outByte
就会被添加到NSData
对象中。
The flush()
method is used for outputting the very last byte. There is no guarantee that the number of compressed bits is a nice round multiple of 8, in which case there may be some spare bits at the end. If so, flush()
adds a few 0-bits to make sure that we write a full byte.flush()
方法用于输出最后一个字节。 不能保证压缩位的数量是8的精确倍数,在这种情况下,最后可能会有一些备用位。 如果是这样,flush()
会添加几个0位以确保我们写一个完整的字节。
Here is a similar helper object for reading individual bits from NSData
:
这是一个类似的辅助对象,用于从NSData
读取各个位:
public class BitReader {
var ptr: UnsafePointer<UInt8>
var inByte: UInt8 = 0
var inCount = 8
public init(data: NSData) {
ptr = data.bytes.assumingMemoryBound(to: UInt8.self)
}
public func readBit() -> Bool {
if inCount == 8 {
inByte = ptr.pointee // load the next byte
inCount = 0
ptr = ptr.successor()
}
let bit = inByte & 0x80 // read the next bit
inByte <<= 1
inCount += 1
return bit == 0 ? false : true
}
}
By using this helper object, we can read one whole byte from the NSData
object and put it in inByte
. Then, readBit()
returns the individual bits from that byte. Once readBit()
has been called 8 times, we read the next byte from the NSData
.
通过使用这个辅助对象,我们可以从NSData
对象读取一个完整的字节并将其放在inByte
中。 然后,readBit()
返回该字节的各个位。 一旦readBit()
被调用了8次,我们就从NSData
读取下一个字节。
Note: If you are unfamiliar with this type of bit manipulation, just know that these two helper objects make it simple for us to write and read bits.
注意: 如果您不熟悉这种类型的位操作,只需知道这两个辅助对象使我们可以轻松地编写和读取位。
The frequency table
频率表
The first step in the Huffman compression is to read the entire input stream and build a frequency table. This table contains a list of all 256 possible byte values and shows how often each of these bytes occurs in the input data.
霍夫曼压缩的第一步是读取整个输入流并构建频率表。 该表包含所有256个可能字节值的列表,并显示每个字节在输入数据中出现的频率。
We could store this frequency information in a dictionary or an array, but since we need to build a tree, we might store the frequency table as the leaves of the tree.
我们可以将这个频率信息存储在字典或数组中,但由于我们需要构建一个树,我们可能会将频率表存储为树的叶子。
Here are the definitions we need:
以下是我们需要的定义:
class Huffman {
typealias NodeIndex = Int
struct Node {
var count = 0
var index: NodeIndex = -1
var parent: NodeIndex = -1
var left: NodeIndex = -1
var right: NodeIndex = -1
}
var tree = [Node](repeating: Node(), count: 256)
var root: NodeIndex = -1
}
The tree structure is stored in the tree
array and will be made up of Node
objects. Since this is a binary tree, each node needs two children, left
and right
, and a reference back to its parent
node. Unlike a typical binary tree, these nodes do not use pointers to refer to each other but use simple integer indices in the tree
array. (We also store the array index
of the node itself; the reason for this will become clear later.)
树结构存储在tree
数组中,并由Node
对象组成。 由于这是二叉树,每个节点需要两个子节点,left
和right
,以及一个返回其parent
节点的引用。 与典型的二叉树不同,这些节点不使用指针相互引用,而是在tree
数组中使用简单的整数索引。 (我们还存储节点本身的数组index
;之后会明白这个原因。)
Note that the tree
currently has room for 256 entries. These are for the leaf nodes because there are 256 possible byte values. Of course, not all of those may end up being used, depending on the input data. Later, we will add more nodes as we build up the actual tree. For the moment, there is not a tree yet. It includes 256 separate leaf nodes with no connections between them. All the node counts are 0.
请注意,tree
目前有256个条目的空间。 这些用于叶节点,因为有256个可能的字节值。 当然,并非所有这些都可能最终被使用,具体取决于输入数据。 稍后,我们将在构建实际树时添加更多节点。 目前还没有一棵树。 它包括256个单独的叶节点,它们之间没有连接。 所有节点计数均为0。
We use the following method to count how often each byte occurs in the input data:
我们使用以下方法计算输入数据中每个字节出现的频率:
fileprivate func countByteFrequency(inData data: NSData) {
var ptr = data.bytes.assumingMemoryBound(to: UInt8.self)
for _ in 0..<data.length {
let i = Int(ptr.pointee)
tree[i].count += 1
tree[i].index = i
ptr = ptr.successor()
}
}
This steps through the NSData
object from beginning to end and for each byte increments the count
of the corresponding leaf node. After countByteFrequency()
completes, the first 256 Node
objects in the tree
array represent the frequency table.
这从头到尾逐步执行NSData
对象,并且每个字节递增相应叶节点的count
。 countByteFrequency()
完成后,tree
数组中的前256个Node
对象代表频率表。
To decompress a Huffman-encoded block of data, we need to have the original frequency table. If we were writing the compressed data to a file, then somewhere in the file we should include the frequency table.
要解压缩霍夫曼编码的数据块,我们需要拥有原始频率表。 如果我们将压缩数据写入文件,那么文件中的某个位置应该包含频率表。
We could dump the first 256 elements from the tree
array, but that is not efficient. Not all of these 256 elements will be used, and we do not need to serialize the parent
, right
, and left
pointers. All we need is the frequency information and not the entire tree.
我们可以从tree
数组转储前256个元素,但效率不高。 并非所有这256个元素都将被使用,我们不需要序列化parent
,right
和left
指针。 我们所需要的只是频率信息,而不是整个树。
Instead, we will add a method to export the frequency table without all the pieces we do not need:
相反,我们将添加一个方法来导出频率表,而不需要我们不需要的所有部分:
struct Freq {
var byte: UInt8 = 0
var count = 0
}
func frequencyTable() -> [Freq] {
var a = [Freq]()
for i in 0..<256 where tree[i].count > 0 {
a.append(Freq(byte: UInt8(i), count: tree[i].count))
}
return a
}
The frequencyTable()
method looks at those first 256 nodes from the tree but keeps only those that are used, without the parent
, left
, and right
pointers. It returns an array of Freq
objects. You have to serialize this array along with the compressed data, so that it can be properly decompressed later.frequencyTable()
方法查看树中的前256个节点,但只保留那些使用的节点,没有parent
,left
和right
指针。 它返回一个Freq
对象数组。 您必须将此数组与压缩数据一起序列化,以便以后可以正确解压缩。
The tree
树
As a reminder, there is the compression tree for the example:
作为提醒,示例中有压缩树:
The leaf nodes represent the actual bytes that are present in the input data. The intermediary nodes connect the leaves in such a way that the path from the root to a frequently-used byte value is shorter than the path to a less common byte value. As you can see, m
, s
, space, and o
are the most common letters in our input data and the highest up in the tree.
叶节点表示输入数据中存在的实际字节。 中间节点以这样的方式连接叶子,即从根到经常使用的字节值的路径比到不常见的字节值的路径短。 正如您所看到的,m
,s
,space和o
是输入数据中最常见的字母,树中最高的字母。
To build the tree, we do the following:
要构建树,我们执行以下操作:
Find the two nodes with the smallest counts that do not have a parent node yet.
Create a new parent node that links these two nodes together.
This repeats over and over until only one node with no parent remains. This becomes the root node of the tree.
找到具有最小计数但尚未具有父节点的两个节点。
创建将这两个节点链接在一起的新父节点。
这反复重复,直到只剩下一个没有父节点的节点。 这将成为树的根节点。
This is an ideal place to use a priority queue. A priority queue is a data structure that is optimized, so that finding the minimum value is always fast. Here, we repeatedly need to find the node with the smallest count.
这是使用优先级队列的理想场所。 优先级队列是优化的数据结构,因此查找最小值总是很快。 在这里,我们一再需要找到计数最小的节点。
The function buildTree()
then becomes:
然后函数buildTree()
变为:
fileprivate func buildTree() {
var queue = PriorityQueue<Node>(sort: { $0.count < $1.count })
for node in tree where node.count > 0 {
queue.enqueue(node) // 1
}
while queue.count > 1 {
let node1 = queue.dequeue()! // 2
let node2 = queue.dequeue()!
var parentNode = Node() // 3
parentNode.count = node1.count + node2.count
parentNode.left = node1.index
parentNode.right = node2.index
parentNode.index = tree.count
tree.append(parentNode)
tree[node1.index].parent = parentNode.index // 4
tree[node2.index].parent = parentNode.index
queue.enqueue(parentNode) // 5
}
let rootNode = queue.dequeue()! // 6
root = rootNode.index
}
Here is how it works step-by-step:
以下是一步一步的工作原理:
Create a priority queue and enqueue all the leaf nodes that have at least a count of 1. (If the count is 0, then this byte value did not appear in the input data.) The
PriorityQueue
object sorts the nodes by their count, so that the node with the lowest count is always the first one that gets dequeued.While there are at least two nodes left in the queue, remove the two nodes that are at the front of the queue. Since this is a min-priority queue, this gives us the two nodes with the smallest counts that do not have a parent node yet.
Create a new intermediate node that connects
node1
andnode2
. The count of this new node is the sum of the counts ofnode1
andnode2
. Because the nodes are connected using array indices instead of real pointers, we usenode1.index
andnode2.index
to find these nodes in thetree
array. (This is why aNode
needs to know its own index.)Link the two nodes into their new parent node. Now this new intermediate node has become part of the tree.
Put the new intermediate node back into the queue. At this point we are done with
node1
andnode2
, but theparentNode
still needs to be connected to other nodes in the tree.Repeat steps 2-5 until there is only one node left in the queue. This becomes the root node of the tree, and we are done.
创建一个优先级队列,并将所有至少计数为1的叶节点入队。(如果计数为0,则此字节值不会出现在输入数据中。)
PriorityQueue
对象按节点排序它们的计数,以便计数最少的节点始终是第一个出列的节点。虽然队列中至少有两个节点,但请删除队列前面的两个节点。由于这是一个最小优先级队列,因此这为我们提供了两个具有最小计数但尚未拥有父节点的节点。
创建一个连接
node1
和node2
的新中间节点。这个新节点的计数是node1
和node2
的计数之和。因为节点是使用数组索引而不是真实指针连接的,所以我们使用node1.index
和node2.index
在tree
数组中找到这些节点。 (这就是为什么Node
需要知道它自己的索引。)将两个节点链接到新的父节点。现在,这个新的中间节点已成为树的一部分。
将新的中间节点放回队列中。此时我们完成了
node1
和node2
,但parentNode
仍然需要连接到树中的其他节点。重复步骤2-5,直到队列中只剩下一个节点。这成为树的根节点,我们就完成了。
The animation shows what the process looks like:
动画显示了该过程的样子:
Note: Instead of using a priority queue, you can repeatedly iterate through thetree
array to find the next two smallest nodes, but that makes the compressor slow as O(n2). Using the priority queue, the running time is only O(n log n) where n is the number of nodes.
注意: 不是使用优先级队列,而是可以重复遍历tree
数组以查找接下来的两个最小节点,但这会使压缩器变慢为O(n2)。 使用优先级队列,运行时间仅为O(nlogn),其中n是节点数。
Fun fact: Due to the nature of binary trees, if we have x leaf nodes we can at most add x - 1 additional nodes to the tree. Given that at most there will be 256 leaf nodes, the tree will never contain more than 511 nodes total.
有趣的事实: 由于二叉树的性质,如果我们有x叶节点,我们最多可以向树中添加x - 1个额外节点。 鉴于最多将有256个叶节点,该树将永远不会包含超过511个节点。
Compression
压缩
Now that we know how to build the compression tree from the frequency table, we can use it to compress the contents of an NSData
object. Here is the code:
现在我们知道如何从频率表构建压缩树,我们可以使用它来压缩NSData
对象的内容。 这是代码:
public func compressData(data: NSData) -> NSData {
countByteFrequency(inData: data)
buildTree()
let writer = BitWriter()
var ptr = data.bytes.assumingMemoryBound(to: UInt8.self)
for _ in 0..<data.length {
let c = ptr.pointee
let i = Int(c)
traverseTree(writer: writer, nodeIndex: i, childIndex: -1)
ptr = ptr.successor()
}
writer.flush()
return writer.data
}
This first calls countByteFrequency()
to build the frequency table and then calls buildTree()
to put together the compression tree. It also creates a BitWriter
object for writing individual bits.
这首先调用countByteFrequency()
来构建频率表,然后调用buildTree()
来组合压缩树。 它还创建了一个用于写入各个位的BitWriter
对象。
Then, it loops through the entire input and calls traverseTree()
for each byte. This method will step through the tree nodes and for each node write a 1 or 0 bit. Finally, we return the BitWriter
's data object.
然后,它遍历整个输入并为每个字节调用traverseTree()
。 此方法将逐步执行树节点,并为每个节点写入1或0位。 最后,我们返回BitWriter
的数据对象。
Note: Compression always requires two passes through the entire input data: first to build the frequency table, and second to convert the bytes to their compressed bit sequences.
注意: 压缩总是需要两次遍历整个输入数据:首先构建频率表,然后将字节转换为压缩的位序列。
The interesting stuff happens in traverseTree()
. This is a recursive method:
有趣的东西发生在traverseTree()
中。 这是一种递归方法:
private func traverseTree(writer: BitWriter, nodeIndex h: Int, childIndex child: Int) {
if tree[h].parent != -1 {
traverseTree(writer: writer, nodeIndex: tree[h].parent, childIndex: h)
}
if child != -1 {
if child == tree[h].left {
writer.writeBit(bit: true)
} else if child == tree[h].right {
writer.writeBit(bit: false)
}
}
}
When we call this method from compressData()
, the nodeIndex
parameter is the array index of the leaf node for the byte that we need to encode. This method recursively walks the tree from a leaf node up to the root and then back again.
当我们从compressData()
调用这个方法时,nodeIndex
参数是我们需要编码的字节的叶节点的数组索引。 此方法递归地将树从叶节点向上移动到根,然后再返回。
As we are going back from the root to the leaf node, we write a 1 bit or a 0 bit for every node we encounter. If a child is the left node, we emit a 1; if it is the right node, we emit a 0.
当我们从根节点回到叶节点时,我们为每个遇到的节点写一个1位或0位。 如果一个孩子是左边的节点,我们发出1; 如果它是正确的节点,我们发出一个0。
In a picture:
图片:
Even though the illustration of the tree shows a 0 or 1 for each edge between the nodes, the bit values 0 and 1 are not actually stored in the tree! The rule is that we write a 1 bit if we take the left branch and a 0 bit if we take the right branch, so just knowing the direction we are going in is enough to determine what bit value to write.
即使树的图示为节点之间的每条边显示0或1,位值0和1实际上也不存储在树中!规则是如果我们采用左分支则写入1位,如果采用右分支则写入0位,因此只要知道我们进入的方向就足以确定要写入的位值。
You use the compressData()
method as follows:
您使用compressData()
方法如下:
let s1 = "so much words wow many compression"
if let originalData = s1.dataUsingEncoding(NSUTF8StringEncoding) {
let huffman1 = Huffman()
let compressedData = huffman1.compressData(originalData)
print(compressedData.length)
}
Decompression
减压缩
Decompression is the compression in reverse. However, the compressed bits are useless without the frequency table. As mentioned, the frequencyTable()
method returns an array of Freq
objects. If we were saving the compressed data into a file or sending it across the network, we'd also save that [Freq]
array along with it.
减压是反向压缩。 但是,没有频率表,压缩位是无用的。 如上所述,frequencyTable()
方法返回一个Freq
对象数组。如果我们将压缩数据保存到文件中或通过网络发送它,我们也会保存[Freq]
数组。
We first need some way to turn the [Freq]
array back into a compression tree:
我们首先需要一些方法将[Freq]
数组转换回压缩树:
fileprivate func restoreTree(fromTable frequencyTable: [Freq]) {
for freq in frequencyTable {
let i = Int(freq.byte)
tree[i].count = freq.count
tree[i].index = i
}
buildTree()
}
We convert the Freq
objects into leaf nodes and then call buildTree()
to do the rest.
我们将Freq
对象转换为叶节点,然后调用buildTree()
来完成剩下的工作。
Here is the code for decompressData()
, which takes an NSData
object with Huffman-encoded bits and a frequency table, and it returns the original data:
这是decompressData()
的代码,它采用带有霍夫曼编码位和频率表的NSData
对象,并返回原始数据:
func decompressData(data: NSData, frequencyTable: [Freq]) -> NSData {
restoreTree(fromTable: frequencyTable)
let reader = BitReader(data: data)
let outData = NSMutableData()
let byteCount = tree[root].count
var i = 0
while i < byteCount {
var b = findLeafNode(reader: reader, nodeIndex: root)
outData.append(&b, length: 1)
i += 1
}
return outData
}
This also uses a helper method to traverse the tree:
这也使用辅助方法遍历树:
private func findLeafNode(reader reader: BitReader, nodeIndex: Int) -> UInt8 {
var h = nodeIndex
while tree[h].right != -1 {
if reader.readBit() {
h = tree[h].left
} else {
h = tree[h].right
}
}
return UInt8(h)
}
findLeafNode()
walks the tree from the root down to the leaf node given by nodeIndex
. At each intermediate node, we read a new bit and then step to the left (bit is 1) or the right (bit is 0). When we get to the leaf node, we simply return its index, which is equal to the original byte value.findLeafNode()
将树从根向下走到nodeIndex
给出的叶节点。 在每个中间节点,我们读取一个新位然后向左(位为1)或向右(位为0)。 当我们到达叶节点时,我们只返回它的索引,它等于原始字节值。
In a picture:
图片:
Here is how we use the decompression method:
以下是我们如何使用解压缩方法:
let frequencyTable = huffman1.frequencyTable()
let huffman2 = Huffman()
let decompressedData = huffman2.decompressData(compressedData, frequencyTable: frequencyTable)
let s2 = String(data: decompressedData, encoding: NSUTF8StringEncoding)!
First we get the frequency table from somewhere (in this case the Huffman
object we used to encode the data) and then call decompressData()
. The string that results should be equal to the one we compressed in the first place.
首先,我们从某处获取频率表(在本例中是我们用于编码数据的Huffman
对象),然后调用decompressData()
。 结果的字符串应该等于我们首先压缩的字符串。
we can see how this works in more detail in the Playground.
我们可以在Playground中更详细地了解它的工作原理。
See also
扩展阅读
The code is loosely based on Al Stevens' C Programming column from Dr.Dobb's Magazine, February 1991 and October 1992.
该代码基于1991年2月和1992年10月Dr.Dobb杂志的Al Stevens的C编程专栏。